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LONG-TERM GOALS

The optical properties of shallow water coastal environments are a complex function of physical and
biogeochemical processes occurring both in sediments and in the water column. Developing models of
the optical properties of these environments requires further knowledge of the processes affecting light
alteration and modification by biogeochemical reactions in the surficial sediments and at the sediment-
water interface. The goal of our work has been to examine one aspect of this problem, namely the
impact of dissolved organic matter (DOM) in sediment pore waters on benthic optical properties.

OBJECTIVES

For the past seven years we have been involved in studies of colored dissolved organic matter
(CDOM) in sediment pore waters as a part of this award and the previous 5 year CoOBOP DRI. We
have examined the processes affecting the production of CDOM in sediment pore waters, the
mechanism(s) by which this material is transported out of the sediments, and the impact of pore water

CDOM on the optical properties of the shallow water benthos (i.e., the sediments, the sediment-water
interface and the waters overlying the sediment).

In this project, our objectives are: to analyze, synthesize and write-up our CoBOP data; to continue to
collaborate in similar efforts with other CoBOP researchers, in order to maximize our ability to use our
combined CoBOP data sets in the examination of the problems outlined above. In the specific context
of our work carried out during CoBOP, such efforts would greatly improve our ability to use these
results to further understand the influence of the benthos on the optical properties of shallow water

- environments. In the larger context of the overall goals of the CoBOP project, these activities are

important for improving the reliability of the interpretation of hyperspectral remote sensing reflectance
data in optically shallow coastal waters.

APPROACH

Our approach involves the continued analysis of COBOP data collected by my lab, as well several
collaborative efforts involving other CoBOP PI's . Our work is carried out by myself (as Pl of the
project), Mr. Scott Kline (a Ph.D student working with me on this project who plans to use his work




here as a the major part of his Ph.D. dissertation), Mr. Xinping Hu (a Ph.D student working with me on
this project who plans to use his work here as a portion of his Ph.D. dissertation).

WORK COMPLETED

In the past year we submitted one manuscript for publication (to Marine Chemistry) on CoBOP-related
work, and presented one poster at the 2003 ASLO Aquatic Sciences Meeting. We published a
manuscript in Limnology and Oceanography based on ancillary data collected during CoBOP project.

Although not yet in finished form, work was carried out this year on Scott Kline’s Ph.D. dissertation
(which will result in at least two additional manuscripts for publication).

RESULTS

The results in the past year are best summarized by the abstracts for the manuscripts and talks
discussed above.

1._Fluorescent Dissolved Organic Matter in Marine Sediment Pore Waters (David J. Burdige, Scott W.
Kline and Wenhao Chen; manuscript submitted to Marine Chemistry)

Fluorescent dissolved organic matter (FDOM) in sediment pore waters from contrasting sites in the
Chesapeake Bay and along the mid-Atlantic shelf/slope break was studied using 3-dimensional
fluorescence spectroscopy . Benthic fluxes of FDOM were also examined at the Chesapeake Bay sites.
The major fluorescence peaks observed in these pore waters corresponded to those observed in the
water column. These included peaks ascribed to the fluorescence of humic-like material (peaks A, C
and M), as well as protein-like peaks that appear to result from the fluorescence of the aromatic amino
acids tryptophan and tyrosine. In these pore waters we also observed a fourth humic-like fluorescence
peak (A’). These four humic-like peaks appeared to occur in two distinct fluorescence emission bands
(peaks A and M in one band and peaks A’ and C in another band), in a manner that was analogous to

that observed for more simple chromophores. The emission band containing peaks A’ and C was red
shifted relative to the peak A and M emission band.

Humic-like fluorescence increased with sediment depth at almost all stations, and was closely
correlated with total DOC. This fluorescence appeared to be a tracer for the refractory, relatively low
molecular weight pore water DOM that accumulates with depth during sediment diagenesis.
Fluorescence-DOC relationships indicated that larger relative amounts of humic-like FDOM were seen
in anoxic sediments versus sub-oxic or mixed redox sediments. By extension, these observations
suggest that refractory humic-like compounds (in general) are preferentially preserved in sediment
pore waters under anoxic conditions. The sources of these humic-like fluorophores are not well
understood although a simple model is presented here which proposes that different types of organic
matter (e.g., marine vs. terrestrial) as well as internal transformations of DOM or FDOM may lead to
the occurrence of these humic-like fluorophores. This model is consistent with a wide range of data on
FDOM in marine as well as freshwater systems. Protein-like fluorescence showed no coherent depth
trends in sediment pore waters, other than the fact that pore water fluorescence intensities were greater
than bottom water values. Based on the results of benthic flux studies in Chesapeake Bay sediments, it




appeared that protein-like fluorescence was associated with high molecular weight DOM intermediates
of organic matter diagenesis (e.g., dissolved peptides and proteins) produced near the sediment-water
interface. In contrast, this did not appear to be the case in sediment pore waters. Benthic flux studies
at the Chesapeake Bay sites further indicated that sediments represent a source of chromophoric DOM
to coastal waters, although further work will be needed to quantify their significance in terms of other
known sources of this material (e.g., riverine input, phytoplankton degradation products).

2. Fluorescence of Pore Water Dissolved Organic Matter in Shallow Water Marine Carbonate

Sediments as a Function of Seagrass Density (S W. Kline and D.J. Burdige; manuscript and
dissertation in prep.)

Pore waters from shallow water carbonate sediments in the Bahamas were collected over a period of
three years on a seasonal basis (winter and early summer) to examine the factors controlling sediment
organic matter remineralization. Sediments at these sites range from bare ooitic sands to sediments
underlying dense seagrass meadows (Thalassia testudim). In this study, pore water samples were
analyzed for their fluorescence properties using EEMS (excitation - emission matrix spectroscopy)
focusing on humic-like and protein-like peaks observed in such fluorescence spectra. Dissolved
organic matter (DOM) fluorescence in shallow water carbonate pore waters showed an overall increase
with depth over the upper 20 cm of sediment. This is similar to that seen in siliciclastic estuarine and
shelf/slope break sediments. However, in the interval from the sediment-water interface to
approximately 2 cm depth, only minor depth changes were observed in the shallow water carbonate
pore waters relative to gradients deeper in the sediment. This may indicate the possible occurrence of
advective mixing of pore waters and bottom waters in these surface sediments. DOM fluorescence was
observed to be a function of seagrass density at these sites. Sites with high seagrass density showed the
largest fluorescence values, while sites with no seagrass (ooitic sands) showed the smallest
fluorescence values. Furthermore, dense seagrass sites showed seasonal trends in DOM fluorescence,
with winter samples having lower fluorescence values than summer samples. The fluorescence/DOC
ratio was also Jower in shallow water carbonate sediments as compared to siliciclastic estuarine and
shelf/slope break sediments. Further examination of the data will involve using it in an attempt to
differentiate between types of DOM present in the sediment pore waters (terrestrial versus marine) and
examine the degradation and remineralization mechanisms affecting both DOM and total organic
matter. We will also use the data to specifically examine the role of seagrasses in the cycling of DOM
in these shallow water carbonate sediments.

3. Dissolved Carbohydrates and Organic Matter in Carbonate Sediments, Lee Stocking Island,
Bahamas (X. Hu and D.J. Burdige; poster presented at to the 2003 ASLO Aquatic Sciences Meeting).

Total dissolved carbohydrates (DCHO) and total dissolved organic carbon (DOC) were examined in
carbonate sediments with different seagrass densities. In dense seagrass sediments, DCHO
concentrations generally increased with depth, while DOC profiles showed variable mid-depth maxima
(z5cm). DCHO and DOC levels were also higher in summer than in winter. In sparse and no seagrass
sediments, DOC showed little seasonal or depth variations. While DCHO had little seasonal variations,
the concentrations reached maxima just below sediment-water interface. DCHO/DOC ratios showed
distinct differences with regard to seagrass densities. The ratios reached maximum values at ~15¢m,
~5cm and ~2cm for dense, sparse and no seagrass sediments, respectively. All of the differences are




likely related to sediment-seagrass interactions, since differences in seagrass densities lead to
differences in both the organic matter input and the diagenetic environment in the sediments. Finally,
larger calcium pore water gradients in dense seagrass sediments (indicative of carbonate dissolution)
suggested that part of the DOC and DCHO may come from the release of organic matter either
strongly adsorbed to, or integrally a part of, the carbonate mineral matrix.

4. Impact of seagrass density on carbonate dissolution in Bahamian sediments (D.J. Burdige and R.C.
Zimmerman [MLML; now at ODUY; Limnology and Oceanography 47:1751 (2003)).

Carbonate dissolution has been widely observed in shallow water tropical sediments. However,
sediment budgets have generally not been closed with respect to the amount of acid required to
produce the observed carbonate dissolution. Recently it has been suggested that enhanced oxygen
transport into sediments through the roots and rhizomes of seagrasses might play a role in resolving
this mass balance problem. We conducted studies of seagrass-carbonate sediment interactions around
Lee Stocking Island, Exuma Islands, Bahamas to further examine this problem. Our studies showed
that alkalinity, total dissolved inorganic carbon ($CO,) and Ca® increased with depth in the pore
waters, while pH and calculated carbonate ion concentration decreased with depth. These observations
are consistent with the occurrence of carbonate dissolution in these sediments. The magnitude of pore
water alkalinity, 3CO, and Ca® changes were also related to seagrass density, with the largest
gradients seen in the sediments of dense seagrass beds. Calculations suggested that less than ~50% of
the O, needed to drive aerobic respiration (and ultimately carbonate dissolution via CO, production)
could be supplied by transport processes such as diffusion, bioturbation and physical pore water
advection. Furthermore, the O, needed to balance the carbonate dissolution budget could be provided
by the transport of <15% of the photosynthetically derived O, to the sediments through seagrass roots
and rhizomes without enhancing the removal of carbonate dissolution end-products. Thus seagrasses

play an important role in controlling the rates of carbonate dissolution in shallow water tropical marine
sediments.

IMPACT/APPLICATIONS

Work carried out during CoBOP and during this year of funding has been useful in terms
understanding the controls on DOM cycling in marine sediment pore waters, and in examining the
extent to which coastal sediments are sources of CDOM to coastal waters. Understanding these
sediment sources of CDOM to the water column and their rates of delivery is clearly important in the

development of reliable algorithms for the interpretation of hyperspectral remote sensing reflectance in
coastal waters.

TRANSITIONS

Based on numerous discussions, our results appear to be of interest to many of the other CoBOP
investigators. This has resulted in several collaborative projects at LSI with other CoBOP-funded
researchers. In particular, ancillary data we collected during the CoBOP project in conjunction with
Dick Zimmerman allowed us to obtain NSF and NOAA-NURP funding to continue work on sediment-
seagrass biogeochemistry in the Bahamas.




RELATED PROJECTS

The efforts are closely related to several other CoBOP projects, including those of M. Allison, R.
Wheatcroft, A. Decho, F. Dobbs/L. Drake, R. Zimmerman, P. Reid, C. Mazel and R. Zanfeld/E. Boss.

PUBLICATIONS

Burdige D. J. and Zimmerman R. C. (2003) The role of seagrasses in calcium carbonate dissolution in
shallow water sub-tropical carbonate sediments. Limnol. Oceanogr. in press 47:1751-1763.

Burdige D. J., Kline S. W., and Chen W. (2003) The cycling of fluorescent dissolved organic matter in
contrasting marine sediments. ms. in revision for to Mar. Chem.
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